插入排序的时间复杂度(算法时间复杂度大小排序)-问答-

插入排序的时间复杂度(算法时间复杂度大小排序)

牵着乌龟去散步 问答 28 0

很多朋友对于插入排序的时间复杂度和算法时间复杂度大小排序不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!

本文目录

  1. ...归并排序”和“堆排序”的时间复杂度分别是多少
  2. 二叉排序树中插入一个结点的时间复杂度是多少
  3. 冒泡排序,快速排序,插入排序,堆排序哪个时间复杂度更高
  4. 直接插入排序的时间复杂度

一、...归并排序”和“堆排序”的时间复杂度分别是多少

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。分类在计算机科学所使用的排序算法通常被分类为:计算的复杂度(最差、平均、和更好表现),依据串列(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对於一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。记忆体使用量(以及其他电脑资源的使用)

稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。一般的 *** :插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的之一个数字来排序。(4, 1)(3, 1)(3, 7)(5, 6)在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:(3, 1)(3, 7)(4, 1)(5, 6)(维持次序)(3, 7)(3, 1)(4, 1)(5, 6)(次序被改变)

不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。排列算法列表在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。

冒泡排序(bubble sort)— O(n2)

鸡尾酒排序(Cocktail sort,双向的冒泡排序)— O(n2)

插入排序(insertion sort)— O(n2)

计数排序(counting sort)— O(n+k);需要 O(n+k)额外记忆体

归并排序(merge sort)— O(n log n);需要 O(n)额外记忆体

原地归并排序— O(n2)二叉树排序(Binary tree sort)— O(n log n);需要 O(n)额外记忆体

鸽巢排序(Pigeonhole sort)— O(n+k);需要 O(k)额外记忆体

基数排序(radix sort)— O(n·k);需要 O(n)额外记忆体

Gnome sort— O(n2) Library sort— O(n log n) with high probability,需要(1+ε)n额外记忆体

选择排序(selection sort)— O(n2)

希尔排序(shell sort)— O(n log n)

如果使用更佳的现在版本 Comb sort— O(n log n)

堆排序(heapsort)— O(n log n) Smoothsort— O(n log n)

快速排序(quicksort)— O(n log n)

期望时间, O(n2)最坏情况;对於大的、乱数串列一般相信是最快的已知排序 Introsort— O(n log n) Patience sorting— O(n log n+ k)最外情况时间,需要额外的 O(n+ k)空间,也需要找到最长的递增子序列(longest increasing subsequence)不实用的排序算法 Bogo排序— O(n× n!)期望时间,无穷的最坏情况。 Stupid sort— O(n3);递回版本需要 O(n2)额外记忆体 Bead sort— O(n) or O(√n),但需要特别的硬体 Pancake sorting— O(n),但需要特别的硬体排序的算法排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。插入排序冒泡排序选择排序快速排序堆排序归并排序基数排序希尔排序插入排序插入排序是这样实现的:首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。重复2号步骤,直至原数列为空。插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。冒泡排序冒泡排序是这样实现的:首先将所有待排序的数字放入工作列表中。从列表的之一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。重复2号步骤,直至再也不能交换。冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。选择排序选择排序是这样实现的:设数组内存放了n个待排数字,数组下标从1开始,到n结束。 i=1从数组的第i个元素开始到第n个元素,寻找最小的元素。将上一步找到的最小元素和第i位元素交换。如果i=n-1算法结束,否则回到第3步选择排序的平均时间复杂度也是O(n²)的。快速排序现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中更高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。堆排序堆排序与前面的算法都不同,它是这样的:首先新建一个空列表,作用与插入排序中的"有序列表"相同。找到数列中更大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。重复2号步骤,直至原数列为空。堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中更大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。平均时间复杂度插入排序 O(n2)冒泡排序 O(n2)选择排序 O(n2)快速排序 O(n log n)堆排序 O(n log n)归并排序 O(n log n)基数排序 O(n)希尔排序 O(n1.25)

二、二叉排序树中插入一个结点的时间复杂度是多少

1、采用边查找边插入的方式,类似重新建立一个一维数组时间复杂度=O(n)因为深度不平衡,所以会发展成单链的形状,就是一条线 n个点那么深。

2、二叉排序树是查找过程中,当树中不存在关键字等zhi于给定值的结点时再进行插入。新插入的结点一定是一个新添加的叶子结点,并且是查找不成功时查找路径 *** 问的最后一个结点的左孩子或右结点。

3、因此二叉排序树插入时间复杂度更大为O(n)。若是二叉排序树比较平衡,其时间复杂度下降,最小的时间复杂度为O(logn)。

4、①结点:包含一个数据元素及若干指向子树分支的信息。

5、②结点的度:一个结点拥有子树的数目称为结点的度。

6、③叶子结点:也称为终端结点,没有子树的结点或者度为零的结点。

7、④分支结点:也称为非终端结点,度不为零的结点称为非终端结点。

8、⑤树的度:树中所有结点的度的更大值。

插入排序的时间复杂度(算法时间复杂度大小排序)-第1张图片-

三、冒泡排序,快速排序,插入排序,堆排序哪个时间复杂度更高

1、选项中的四种排序 *** 的最坏时间复杂度、更好时间复杂度、平均时间复杂度分别为:

2、A、冒泡排序: O(n2)、O(n)、O(n2)。

3、B、快速排序: O(n2)、O(nlog2n)、 O(nlog2n)。

4、C、插入排序:O(n2)、 O(n)、O(n2)。

5、D、堆排序: O(nlog2n)、 O(nlog2n)、 O(nlog2n)。

6、所以,在最坏情况下,冒泡排序时间复杂度=快速排序时间复杂度=插入排序时间复杂度=O(n2)>堆排序时间复杂度=O(nlog2n)。答案选D。

7、堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

8、在堆的数据结构中,堆中的更大值总是位于根节点(在优先队列中使用堆的话堆中的最小值位于根节点)。堆中定义以下几种操作:

9、更大堆调整:将堆的末端子节点作调整,使得子节点永远小于父节点。

10、创建更大堆:将堆中的所有数据重新排序。

11、堆排序:移除位在之一个数据的根节点,并做更大堆调整的递归运算。

四、直接插入排序的时间复杂度

1、直接插入排序的时间复杂度是O(n^2)。

2、直接插入排序是一种简单且易于理解的排序算法。它的基本思想是将未排序的元素插入到已排序序列的合适位置,从而达到排序的目的。在直接插入排序算法中,我们需要不断地比较和移动元素。首先,我们将之一个元素视为已排序序列,然后从第二个元素开始,将其与已排序序列的元素进行比较,直到找到合适的插入位置。这个过程需要O(n)的时间复杂度。

3、接下来,对于每个剩余的元素,我们需要重复上述的插入操作。因此,对于n个元素,我们需要进行n次插入操作,每次插入的时间复杂度为O(n)。因此,直接插入排序算法的总时间复杂度为O(n^2)。

4、虽然直接插入排序算法的时间复杂度较高,但在处理小规模数据或部分有序数据时,它的效率可能比其他高级排序算法更高。此外,由于其简单性和易于理解性,直接插入排序在许多应用场景中仍然是一种常用的选择。

5、进入查找(插入位置)循环之前,它保存了R[i]的副本,使不致于因记录后移而丢失R[i]的内容;在查找循环中“监视”下标变量j是否越界。一旦越界(即j=0),因为R[0]可以和自己比较,循环判定条件不成立使得查找循环结束,从而避免了在该循环内的每一次均要检测j是否越界(即省略了循环判定条件“j=1”)。

6、引入哨兵后使得测试查找循环条件的时间大约减少了一半,所以对于记录数较大的文件节约的时间就相当可观。对于类似于排序这样使用频率非常高的算法,要尽可能地减少其运行时间。所以不能把上述算法中的哨兵视为雕虫小技,而应该深刻理解并掌握这种技巧。

7、以上内容参考百度百科-直接插入排序

OK,本文到此结束,希望对大家有所帮助。

标签: 复杂度 排序 时间 算法 插入

抱歉,评论功能暂时关闭!